
Received 28 October 2002
Accepted 13 March 2003

Published online 25 July 2003

Quantifying male attractiveness
John M. McNamara1*, Alasdair I. Houston2, Miguel Marques dos Santos1,
Hanna Kokko3† and Rob Brooks4

1Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
2School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1GU, UK
3Division of Environmental and Evolutionary Biology, Institute of Biomedical and Life Sciences, University of Glasgow,
Glasgow G12 8QQ, UK
4School of Biological Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia

Genetic models of sexual selection are concerned with a dynamic process in which female preference and
male trait values coevolve. We present a rigorous method for characterizing evolutionary endpoints of this
process in phenotypic terms. In our phenotypic characterization the mate-choice strategy of female popu-
lation members determines how attractive females should find each male, and a population is evol-
utionarily stable if population members are actually behaving in this way. This provides a justification of
phenotypic explanations of sexual selection and the insights into sexual selection that they provide. Fur-
thermore, the phenotypic approach also has enormous advantages over a genetic approach when comput-
ing evolutionarily stable mate-choice strategies, especially when strategies are allowed to be complex time-
dependent preference rules. For simplicity and clarity our analysis deals with haploid mate-choice genetics
and a male trait that is inherited phenotypically, for example by vertical cultural transmission. The method
is, however, easily extendible to other cases. An example illustrates that the sexy son phenomenon can
occur when there is phenotypic inheritance of the male trait.
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1. INTRODUCTION

It is only adaptive for females to be selective about their
choice of mate if males differ in their value to a female. A
male’s value as a mate may depend on direct or indirect
benefits (Kirkpatrick & Ryan 1991; Kokko et al. 2003).
Direct benefits are advantages such as food, protection or
a good territory that a male may provide for a female or
her young. Indirect benefits are based on a male’s genes.
The genes that a male passes on to its offspring may influ-
ence the offspring’s ability to survive and reproduce. One
way in which genes may influence offspring reproductive
success is by determining the attractiveness of male off-
spring to females. This effect was proposed by Fisher
(1930) as the basis for an explanation of exaggerated
male traits.

Fisher argued that, given an initial female preference for
a male trait, both the strength of the female preference
and the value of the male trait could be increased by sex-
ual selection. The male trait is favoured because of the
female preference, and the female trait is favoured because
females that are choosy have sons that are preferred.
Fisher gave a verbal account of this ‘runaway process’.
Lande (1981) and Kirkpatrick (1982) constructed models
based on population genetics to show that Fisher’s run-
away process could work. In these models, the female does
not incur any cost as a result of being choosy. Pomiankow-
ski (1987) showed in a particular context that including
costs of female preference resulted in no permanent effect
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of the Fisher process. Subsequent work demonstrated that
the Fisher process could still occur if the genes controlling
the male trait were subject to biased mutation
(Pomiankowski et al. 1991).

The basis of the Fisher process is that it is more valuable
for a female to mate with some males than with others.
This advantage might be able to compensate for any direct
disadvantage associated with choosing a male as a mate.
For example, if males differ in both attractiveness and the
care that they provide for their offspring, then it might be
advantageous for a female to mate with an attractive male
even if he provides less care than an unattractive male.
This idea is known as the sexy son hypothesis
(Weatherhead & Robertson 1979) because females are
compensated for reduced male care by having sexy sons.
Weatherhead and Robertson supported their idea with a
simple model based on counting descendants a given
number of generations into the future. Kirkpatrick (1985)
pointed out that the model of Weatherhead and Robertson
was incorrect. He also argued more generally that the pro-
cedure of counting descendants was not valid (see also
Arnold 1983). From his genetic analysis, Kirkpatrick con-
cluded that the advantage of sexy sons could not compen-
sate a female for a direct cost, but Pomiankowski et al.
(1991) showed that the sexy son effect can occur in some
genetic models.

We can explain the Fisher process in terms of the value
to a female of mating with different males. In contrast to
this perspective, models based on genetics deal with the
change of gene frequencies over time, rather than ideas
of value. Genetic models have done much to further our
understanding of sexual selection, but it can be argued
that they lack the intuitive appeal of phenotypic expla-
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nations based on values and rewards. The genetic
approach is clearly fundamental. Does this mean that the
intuitive arguments based on value are sloppy, or can they
be made precise in the sense that they give the same final
outcomes as a genetic analysis? If phenotypic explanations
cannot be made precise then the intuition afforded by ver-
bal arguments may be misleading. Conversely, if they can
be made precise, then careful verbal arguments based on
a suitable idea of value provide considerable advantages.
It can be difficult to analyse the evolution of a large num-
ber of traits in a genetic model. The conversion to a
phenotypic model makes it possible to characterize end-
points in terms of game theory or optimality and hence
makes the analysis much easier. More importantly, the
phenotypic approach offers genuine insight into sexual
selection (Grafen 1990a,b; Pen & Weissing 2000; Kokko
et al. 2002).

Taylor (1990) develops a technique that can be used
to translate genetic models into phenotypic models using
reproductive value. Pen & Weissing (2000) use this tech-
nique to give a phenotypic account of mate choice and
sexual selection. In this paper we present an alternative
technique that gives the same end result as the analysis of
Taylor (1990), but achieves this result more directly in the
case we analyse. Our phenotypic account is similar to that
of Pen & Weissing (2000) but is applied to a different
aspect of sexual selection. We consider a simple model in
which females choose the male that they will mate with
on the basis of the value of a male’s trait. A female’s rule
for choosing a mate is genetically determined by a single
haploid locus. For simplicity we assume that the trait of
a male is determined, with error, by the trait of his father,
i.e. transmission is based on phenotype rather than geno-
type. This paternal effect could be based on vertical cul-
tural inheritance, such as inheritance of song in some
species of bird or the inheritance of wealth in humans. (It
could also be transmitted on a chromosome that only
occurs in males.) For this model we show that the end-
points of selection can be characterized phenotypically in
a rigorous way. The heart of our analysis involves
assigning an attractiveness to a male that quantifies the
advantage to a female of mating with the male. This value
is not assumed in advance; instead it emerges in a self-
consistent way from our analysis.

We have deliberately chosen a context in which the logic
of our approach can be clearly demonstrated. Both diploid
determination of the mate-choice rule and genetic inherit-
ance of the male trait introduce complications that are
described in the discussion. Despite these complications,
our approach can still be used to obtain a phenotypic
account in these cases.

2. THE MODEL

We consider a large, well mixed, sexually reproducing
population. Males are of one of K distinct phenotypes lab-
elled 1, …, K. Type is passed (with error) from father to
son phenotypically. There is an annual breeding season in
which each female chooses which male or males to mate
with. Offspring that result from matings in one breeding
season are sexually mature by the next breeding season.
A female’s mate-choice rule determines what types of
males the female prefers to mate with and how choosy she
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is. Typically choosiness incurs costs. For example, a
choosy female might tend to take longer to find a mate
and hence leave fewer surviving offspring, either because
she is in poorer condition at reproduction or because
young produced late have lower survival prospects. The
female’s mate-choice rule may also affect the probability
that she survives to breed again next year. We assume,
however, that the mate-choice rule used by a female does
not affect her before her first breeding season.

A female’s mate-choice rule is determined by a single
haploid autosomal locus. Alleles are denoted by �, ��, etc.
We assume a one-to-one correspondence between poss-
ible mate-choice rules and alleles. Thus for every mate-
choice rule there is a unique allele that codes for this rule.
Given this assumption we simplify notation, allowing � to
denote an allele and the mate-choice rule that is coded for
by the allele. A male carries, but does not express, the
mate-choice allele that it inherits from its parents. Each
offspring inherits the mate-choice allele of its mother with
probability 0.5 and that of its father with probability 0.5.

(a) Invasibility and evolutionary stability
We will say that strategy � is the resident mate-choice

strategy if all population members are genetically �. Con-
sider a population where � is the resident strategy. Let
this population be demographically stable, i.e. the popu-
lation has stable growth (or constant size, if density-
dependent effects are acting) and has a stable composition
over time. In particular, the sex ratio is stable, as are the
proportions of males of each type. Suppose that a mutant
�� allele arises in this resident � population. Will the
mutant invade into the resident population? If the
mutation arises just once, then it may become extinct
because of demographic stochasticity, even if the mutation
confers high fitness. We ignore such chance events and
focus on mutations that are not too rare. Then invasion
is concerned with whether mean mutant numbers grow
faster than resident numbers when mutant numbers are
still rare compared with residents.

To quantify the rate of growth of mutant numbers we
census the population annually at the start of each breed-
ing season. At a census time a �� allele can be in one of
K � 1 types of individual; a female or a type j male,
j = 1, …, K. First consider a �� female present at the start
of a breeding season. The �� descendants of this female
that are present at the start of the breeding season next
year comprise: (i) any �� offspring produced this year that
survive until next year; and (ii) the female herself, if she
survives. We enumerate such descendants by the functions

�i(��, �) = expected number of �� type i male descen-
dants left next year.

�(��, �) = expected number of �� female descendants left
next year.

Now consider a �� type j male present at the start of a
breeding season. His �� descendants are enumerated by
the functions

ai j(�) = expected number of �� type i male descendants
left next year.

b j(�) = expected number of �� female descendants left
next year.
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These quantities depend on � but not �� because of the
following assumptions: (i) the mate-choice gene is not
expressed in males; (ii) a �� male will almost certainly
mate with a � female because the �� allele is rare; and (iii)
daughters are not affected by the mate-choice allele that
they carry until their first breeding season; sons are also
not affected.

Suppose that in year t there are nj (t) �� type j males and
nf(t) �� females present at the start of the breeding season.
Then, provided numbers of the �� allele are not too small
(so that demographic stochasticity can be ignored), num-
bers present in year t � 1 are related to numbers present
in year t by nT(t � 1) = L(��, �)nT(t), where nT(t) is the
transpose of the row vector n(t) = (n1(t), n2(t), …, nK(t),
nf(t)) and L(��, �) is the (K � 1) by (K � 1) matrix

L(��, �) =

a11(�) a12(�) % a1K(�) �1(��, �)

a21(�) % % a2K(�) �2(��, �)

� � �

aK1(�) % % aKK(�) �K(��, �)

b1(�) % % bK(�) �(��, �)

. (2.1)

We refer to L(��, �) as the projection matrix for the ��
allele when the resident strategy is �. Over time, the
annual proportionate increase in the total number of
mutant alleles will settle down:

total mutant numbers in year t � 1
total mutant numbers in year t

→ �(��, �), (2.2)

where the stable growth rate �(��, �) is the maximum
eigenvalue of the projection matrix L(��, �). Following
Metz et al. (1992) we assume that the resident startegy �
is stable against invasion by the mutant allele �� if

�(��, �) � �(�, �), (2.3)

that is, within the resident � population the growth rate
of mutant allele numbers is less than that of resident allele
numbers. This invasion criterion does not just count chil-
dren or grandchildren. Instead, by using stable growth
rates it counts the number of copies of itself that an allele
leaves far into the future.

A resident strategy �∗ is an evolutionarily stable strategy
(ESS) if no strategy different from �∗ can invade
(Maynard Smith 1982). Thus a sufficient condition for �∗

to be an ESS is that

�(�, �∗) � �(�∗, �∗) for all � � �∗. (2.4)

In other words, if we regard �(��, �) as the payoff to the
strategy �� playing against the strategy � in a game, then
a sufficient condition for the evolutionary stability of a
mate-choice strategy �∗ is that �∗ is the unique best
response to itself in this genetic game. We now introduce
a phenotypic game whose equilibrium solutions coincide
with those of this game.

(b) The phenotypic game
Suppose that all population members are genetically �,

that is � is the resident mate-choice strategy, then the
population projection matrix is L(�, �). Let the vector
V(�) = (V1(�),V2(�), ..., VK(�), 1) be the eigenvector of
L(�, �) satisfying
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V(�)L(�, �) =�(�, �)V(�). (2.5)

Then Vj(�) is the reproductive value of a type j male rela-
tive to a female. This is the ratio of the expected number
of descendants left at some time far in the future by the
male relative to the expected number left by a female at
this time (e.g. Houston & McNamara 1999; Caswell
2001).

We now use reproductive value to construct the payoff
in another game. For strategies �� and � set

W(��, �) = �K
i = 1

�i(��, �)Vi(�) � �(��, �). (2.6)

We refer to the game with payoff W as the phenotypic
game. W(��, �) is the expected total reproductive value of
the offspring left next year by a female using mate-choice
strategy ��, where reproductive value is that under the
resident strategy �.

In Appendix A it is shown that the genetic and pheno-
typic game payoffs are related by

W(��, �) � W(�, �) ⇔ �(��, �) � �(�, �). (2.7)

The left-hand inequality says that a mutant female which
uses mate-choice strategy �� this year, but whose descend-
ants revert to the resident mate-choice strategy � in future
years, will leave fewer descendants far in the future than
a resident female. As relationship (2.7) shows, this is equi-
valent to the mutant leaving fewer descendants if all her
descendants use strategy �� rather than reverting to �.

Relationship (2.7) allows us to reformulate the con-
ditions for the evolutionary stability of a strategy �∗ in
terms of W rather than �. By criterion (2.4) and result
(2.7) a sufficient condition for �∗ to be an ESS is that

W(��, �∗) � W(�∗, �∗) for all �� � �∗. (2.8)

In the language of game theory, if a strategy �∗ is the
unique best response to itself in the genetic game it is the
unique best response to itself in the phenotypic game.
(This does not mean that the two games have the same
best response functions; in general they do not.) The
characterization of evolutionary stability given by
expression (2.8) can also be obtained using the method
given by Taylor (1990).

For the specific mate-choice model we present below,
every strategy has a unique best response. That is, for
every strategy � there is a unique strategy B(�) such that

W(B(�), �) = max
��

W(��, �). (2.9)

Thus, in this case a strategy �∗ is an ESS if and only if

B(�∗) = �∗. (2.10)

3. EXAMPLE: MALES ENCOUNTERED AS A
POISSON PROCESS

To illustrate the above theoretical results we specify a
detailed model of the mate-choice process. Assume non-
overlapping generations with a generation time of 1 year.
The annual breeding season starts at time of year t = 0 and
ends at time t = Tseason. During a breeding season a female
searches until she finds a suitable mate. While searching
she encounters males as a Poisson process of rate unity.
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Encountered males are drawn at random from the popu-
lation. On each encounter the female must decide whether
to mate with that particular male, or reject him and con-
tinue to search. On mating she stops searching, produces
offspring and then dies. If she has not mated by the end
of the breeding season she dies without producing any off-
spring. A male may mate with many females during a sea-
son. After the breeding season he also dies.

Mating with a type i male produces, on average, Ni off-
spring, of which half are sons and half are daughters. Sur-
vival of offspring to maturity is independent of their sex
and type. It is also independent of the time at which the
parents mated. Thus the only cost to the female of rejecting
a male is that she may not encounter another before the
end of the breeding season, and hence may fail to breed.

Define ri(�) to be the expected total reproductive value
of the surviving offspring if a female mates with a type i
male. We refer to ri(�) as the attractiveness of a type i
male. By equations (2.6) and (2.9), a female following the
best response strategy B(�) maximizes the expected
attractiveness of the male that she chooses. This strategy
can thus be found by standard dynamic optimization tech-
niques (e.g. Whittle 1982). Because an ESS is the best
response to itself, in an evolutionarily stable population
the attractiveness of a type i male describes the strength
of preference of resident females for a male of this type.

Whatever the resident mate-choice strategy, it can be
shown that the best response is uniquely defined and has
the following form determined by the K switch times
t1, t2, …, tK. On encountering a type i male at time t a
searching female rejects the male if t � ti and mates with
the male if t 	 ti.

(a) Two male types
Suppose that there are two types of males (i.e. K = 2)

and that among the sons of a type i male a proportion
1 
 pi are type i and a proportion pi are the other type.
We refer to p1 and p2 as mutation rates because they spec-
ify the error in passing on type from father to son. To
obtain a positive correlation between son’s type and
father’s type we assume that p1 � p2 � 1. Note that, given
the assumptions of the model, the absolute values of N1

and N2 are not relevant, only their ratio N1/N2 affects
results.

At least one of the switch times t1 and t2 is zero because
it is never optimal for a female to reject both types of male
at time 0. Because best responses are of this form, in
searching for an ESS we can restrict attention to resident
strategies of this form. In other words, we restrict attention
to strategies � that can be expressed as a pair of non-
negative numbers � = (t1, t2), where at least one of these
numbers is zero.

(i) Symmetric case
Consider the case where N 1 = N 2 and p1 = p2. Then

the two males are identical, except for a label that is recog-
nized by females. In this case the mate-choice strategy of
taking the first male encountered (i.e. the strategy
�∗ = (0, 0)) is always an ESS (and always continuously
stable; see below). We refer to this strategy as one of no
preference. When presenting results we show this ESS and
those where females prefer type 1 males, i.e. ESSs of the
form �∗ = (0, t∗2), where t∗2 � 0. By symmetry, whenever
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such an ESS exists there is a mirror image ESS with pref-
erence for type 2 males, and vice versa.

A female that follows mate-choice strategy � = (0, t2)
always accepts type 1 males. The larger the switch time t2,
the more costs she is prepared to incur to obtain a type 1
male rather than a type 2 male. In other words, as t2
increases so does her strength of preference for type 1
males. An increase in the preference of resident females for
type 1 males increases the number of matings of the sons,
grandsons and so on, of type 1 males. Thus it increases the
advantage to a mutant female of mating with a type 1 male
rather than a type 2 male. This advantage, quantified as
relative attractiveness, is illustrated in figure 1a.

In this symmetric case, when resident females prefer
type 1 males, the best response of a mutant female is either
to show no preference or to show a preference for type 1
males as well. With a slight abuse of notation we denote
the best response to the resident mate-choice strategy
� = (0, t2) by B(�) = (0, B(t2)). Figure 1b illustrates best
response functions.

A resident strategy �∗ = (0, t∗2) is an ESS if and only if
B(t∗2) = t∗2. This criterion means that no mutant following
another strategy can invade into a population where the
resident strategy is already �∗. Another stability criterion
is that of continuous stability (Eshel 1983). A population
is continuously stable if it will evolve to �∗ when initially
displaced slightly from �∗. Let the resident mate-choice
strategy be � = (0, t2). If B(t2) � t2, then a female follow-
ing the best mutant strategy has a stronger preference for
type 1 males than resident females. Under suitable regu-
larity conditions (see Appendix B) this means that the
population will evolve towards higher preference. Con-
versely, if B(t2) � t2, the population will evolve towards
less preference. Thus for the special one-dimensional case
we are considering, an ESS �∗ = (0, t∗2) is also continu-
ously stable if the slope of B satisfies B�(t∗2) � 1 (cf. Eshel
1983; Taylor 1989). Conversely, if B�(t∗2) � 1, then a
population displaced from �∗ in either direction will
evolve further away from �∗ in that direction, so that �∗

is situated on an invasion barrier. It is reasonable to sup-
pose that an endpoint of the process of evolution is both
an ESS and continuously stable; i.e. it is a CSS as defined
by Eshel.

Figure 1b illustrates the best response to the resident
mate-choice strategy for two values of the common
mutation probability. For each value, when resident
females have a weak preference for type 1 males, the best
response is to have no preference. A population where
initially females had a weak preference for type 1 males
would thus evolve to no preference. When the mutation
probability is high, females following the best response
strategy always have a weaker preference for type 1 males
than resident females. Thus the only ESS is one of no
preference. When the mutation probability is low, females
following the best response strategy have a greater prefer-
ence for type 1 males than resident females for a range of
resident mate-choice strategies. There are then three
ESSs, but the middle one is not continuously stable and
forms an invasion barrier between the other two.

Figure 2 shows the effect of breeding season length.
When the season is short a female cannot afford to be
choosy and no preference is the only ESS. For longer sea-
son length there is less likelihood that a female who rejects
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Figure 1. The effect of the resident mate-choice strategy
when there is symmetry between the two types of male. The
resident strategy is � = (0, t2), indicating that type 1 males
are always accepted and type 2 males are rejected before the
switch time t2. (a) The attractiveness of type 1 males relative
to type 2 males, r1(�)/r2(�). (b) The best response B(�)
= (0, B(t2)) to the resident strategy. For case (ii), arrows
mark the three solutions of the equation B(t∗2) = t∗2, and it is
also indicated whether or not each ESS is continuously
stable. Cases are (i) high mutation probabilities p1 = p2

= 0.3; (ii) low mutation probability p1 = p2 = 0.15.
Tseason = 2.7, N1 = N2.

a type 2 male early in the season will fail to encounter
another male. Thus the female loses little by being choosy,
and there are also two other ESSs, one of which is con-
tinuously stable whilst the other is not. As in figure 1, the
continuously stable ESS is separated from the no-
preference ESS by the invasion barrier formed by the
other ESS (figure 2a). As the season length increases, and
hence the cost of being choosy decreases, the relative
attractiveness of type 1 males at the choosy ESS increases
(figure 2b).

(ii) Effect of N1/N2

We now allow the two types of male to produce differ-
ent numbers of offspring. Figure 3 shows how the continu-
ously stable ESSs and invasion barriers depend on the
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Figure 2. The effect of the length of the breeding season
Tseason when there are two male types. (a) ESS mate-choice
rules of the form �∗ = (0, t∗2). For Tseason � Tcri t no
preference is the only ESS. For Tseason � Tcri t a second
continuously stable ESS is separated from the no-preference
ESS by an invasion barrier. (b) The attractiveness of type 1
males relative to type 2 males at the continuously stable ESS
with preference for type 1 males. p1 = p2 = 0.15, N1 = N2.

ratio N1/N2. As can be seen, for a range of values of N1

and N2 with N 1 � N 2 there is a continuously stable ESS
with preference for type 1 males. In other words, at evol-
utionary stability females prefer males that produce less
offspring. This is an example of the sexy son phenomenon
(Weatherhead & Robertson 1979).

(b) Multiple male types
Figure 4 presents results for an example in which there

are 50 types of male. In this example the number of sur-
viving offspring that result from mating with a type i male
decreases as i increases (figure 4a). The mean type of the
sons of a type i male lies between 1 and i, so that mutation
is biased and tends to reduce type number (cf. Iwasa et
al. 1991; Pomiankowski et al. 1991). Full details on the
number and type of offspring are given in Appendix C.
The figure shows aspects of the resident population at
each of two continuously stable ESSs. Computations
(examining sensitivity to initial conditions) suggest that
these are the only continuously stable ESSs. At one ESS
females prefer males that provide the most offspring. At
the other, females prefer males of intermediate type to
males that produce the most offspring and to males that
produce very few. This is a further example of the sexy
son phenomenon.
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Figure 3. The effect of the number of surviving offspring on
the number and stability of ESSs that are present. There are
two types of male, so that results depend on the ratio N1/N2.
Continuously stable ESSs lie on the solid lines; invasion
barriers lie on dashed lines. In showing ESSs we adopt the
following convention: a positive switch time t corresponds to
the ESS (0, t) with preference for type 1 males; a negative
switch time 
t corresponds to the ESS (t, 0) with preference
for type 2 males. Only a small range of negative values is
shown, but the full curve can be constructed by symmetry
with the positive values. p1 = p2 = 0.15, Tseason = 4.

4. DISCUSSION

We have shown that the Fisher process and the sexy
son effect can occur when the female trait is genetically
determined and the male trait is culturally determined and
inherited by vertical transmission. Although there have
been previous models of cultural transmission and sexual
selection (e.g. Laland 1994a,b; Aoki et al. 2001; Naka-
jima & Aoki 2002), this particular issue has not been
addressed.

Any model that analyses the Fisher process, or, more
generally, mate choice for indirect benefits, cannot just
count offspring number because the beneficial effects of
choosing a sexy son do not begin to appear until grand-
children are produced. In contrast to approximations that
look no further into the future than grandchildren
(Weatherhead & Robertson 1979; Heisler 1981), our
approach looks at the asymptotic rate of spread of a mate-
choice allele. We then translate results on spread rates into
results about the total reproductive value of descendants
left in 1 year’s time. In this way, structuring the population
and allowing reproductive value to depend on type, we are
able to look just 1 year into the future in assessing whether
a mutant allele can ultimately invade. This equivalence of
the long-term and short-term fitness advantage has been
pioneered by Taylor (1990) in the context of translating
genetic models into phenotypic models. Our analysis in
this specific case is more direct than that of Taylor, but
reaches the same conclusion.

A further benefit of our method is that we do not need
to make the assumption of fixed correlations between
traits and preferences. Genetic approaches need to con-
sider the correlation between the female mate-choice allele
carried by a male and male’s trait value, but are unable
to generate this correlation from first principles except in
cases of very few loci (e.g. Kirkpatrick 1982). Our
approach obviates the need to look at correlations because
counting numbers of offspring of each type, rather than
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Figure 4. Example with 50 types of male. Two ESSs,
referred to as ESS1 and ESS2, are illustrated. (a) For each
male type: the number of surviving offspring left by a female
if she mates with a male of this type (the Ni of the text), and
the attractiveness of a male of this type at each ESS. Circles,
offspring number; squares, attractiveness ESS2; triangles,
attractiveness ESS1. (b) The two ESS mate-choice strategies,
each specified by a sequence of switch times t1, t2, …, t50.
Squares, switch times ESS2; triangles, switch times ESS1.
(c) The proportion of males of each type at each of the
ESSs. Squares, proportion ESS2; triangles, proportion
ESS1. Tseason = 4.

just total numbers, automatically takes correlation into
account. In other words, a female with a preference is
more likely to have her offspring sired by an attractive
male, which automatically establishes a correlation
between female preferences and offspring traits when both
the trait and the preference is passed on to offspring.
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Pen & Weissing (2000) analyse a specific model of sex-
ual selection using an approach based on that of Taylor
(1990). In their model, males inherit the propensity y to
develop into a particular type, and any correlation
between the type of a father and that of his son is solely
due to inheritance of this y value. Thus if population
members all have the same y values (for example, at evol-
utionary stability) then there is no correlation between
father’s type and son’s type. Pen & Weissing (2000) con-
clude that when female preference is costly there is no
stable equilibrium with female preference for sexy sons.
They thus infer that Fisherian runaway models are most
relevant when female preference pre-exists for some rea-
son not included in the model. By contrast, our analysis,
which incorporates a positive correlation between the type
of a father and that of his sons (even at evolutionary
stability), shows that simple models can predict stable
equilibria with female preference for sexy sons. Generally,
for a sexy son benefit to cause the evolution of female
choice despite direct costs that it incurs, it appears neces-
sary that there is a process that maintains variation in off-
spring sexiness, despite the directional selection provided
by female preference (Kokko et al. (2002); ‘handicap’ ver-
sion of the model of Pomiankowski et al. (1991), Eshel et
al. (2000)). Models that lack this assumption do not pre-
dict stable female choice (Kirkpatrick (1985), Pomian-
kowski (1987); ‘large-effect mutation’ version of the
model of Eshel et al. (2000)). In our model, this variation
is provided by errors in transmission from father to son.

Our approach characterizes the stable endpoints of the
evolutionary process in phenotypic terms (cf. Grafen
1990a; Taylor 1990; Eshel 1996; Hammerstein 1996;
Weissing 1996; Pen & Weissing 2000). This approach
gives us a consistent way to measure the ‘costs’ and ‘bene-
fits’ of mating with a particular male, when fitness conse-
quences include direct as well as indirect effects. We have
formally defined the attractiveness of a male as the
expected value of the surviving offspring produced on
mating with the male. The resident mate-choice strategy
in a population determines the attractiveness of each type
of male. A mutant female is following the best response
strategy if her behaviour maximizes the expected attract-
iveness of the male that she chooses. In this sense attract-
iveness specifies the mate-choice costs that a female
should be prepared to pay to be choosy. The population
is evolutionarily stable if resident females are following this
best response strategy. Thus an ESS is characterized by
the self-consistency of attractiveness: the resident strategy
specifies how attractive females should find each male; this
strategy is an ESS if and only if resident females are behav-
ing in this way. This phenotypic characterization of evol-
utionary stability facilitates intuition about sexual
selection. It also has enormous advantages over a genetic
approach when computing ESS. For example, we have
presented a model in which there are 50 types of male. In
this model a female’s mate-choice strategy specifies a
switch time for each type of male, so that it is determined
by 50 traits. Genetic models would find it cumbersome
to analyse selection in 50 dimensions. By contrast, our
approach has no problem in identifying best responses
using the power of dynamic optimization techniques such
as dynamic programming (applied to a 50-state problem,
not a 50-dimension problem).
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We have chosen to present our phenotypic approach in
the simplest possible case of haploid genetics and pheno-
typic inheritance of the male trait. This has allowed us to
expose the logic of the situation in the clearest way, but
the basic logic still holds in other cases. When female
choice is determined by diploid genetics, the analysis goes
through as before for mutants that are not completely
recessive. Completely recessive mutants must be treated
differently (e.g. using the approach of Taylor (1990)), as
we cannot assume that individuals that are heterozygous
for this mutant are rare in determining the projection
matrix. When the female choice rule and the male type
are both genetically determined, a rare mate-choice allele
can be found in 2K types of individual: as before there are
K types of male but there are now also K types of female
because the female carries the male type allele. The pro-
jection matrix is thus a 2K by 2K matrix, but our approach
can still be applied. Results depend on whether the
expression of the female mate-choice allele can depend
on the gene for male type that she is carrying. If such a
dependence is possible then models predict that females
should put less effort into finding a preferred male if they
are already carrying an allele for this male type (J. M.
McNamara, M. Marques dos Santos and A. I. Houston,
unpublished data). Such complications are easy to deal
with in a phenotypic model based on reproductive value
calculations.

We thank Innes Cuthill, Andrew Pomiankowski, Franjo Weiss-
ing and three anonymous referees for comments on previous
versions of this paper. M.M.d.S. was supported by Fundação
para a Ciência e Tecnologia.

APPENDIX A: THE RELATIONSHIP BETWEEN THE
GENETIC AND PHENOTYPIC GAMES

To analyse the relationship between the games, we
adapt a technique used by Caswell (2001) to look at eigen-
value sensitivity. Consider a resident � population in
which the mutant allele �� is rare. At the demographic
steady state the ratio of numbers of mutant type i males
to mutant females, P�i is stable and satisfies

L(��, �)P �T = �(��, �)P�T, (A 1)

where P� denotes the row vector

P� = (P �1, P �2, ..., P �K, 1). (A 2)

The matrices L(��, �) and L(�, �) have identical first K
columns. Thus by equation (2.6)

V(�) [L(�, �) 
 L(��, �)] = (0, ..., 0, W(�, �)

 W(��, �)). (A 3)

Multiplying both sides of equation (A 3) from the right
by P�T gives

W(�, �) 
 W(��, �) = V(�)[L(�, �)

 L(��, �)] P �T. (A 4)

Thus by equations (2.5) and (A 1)

W(�, �) 
 W(��, �) = [�(�, �)

 �(��, �)] V(�) P �T. (A 5)

Because V(�) P�T is positive we deduce relationship (2.7)
of the main text.
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APPENDIX B: BEST RESPONSES AND
CONTINUOUS STABILITY

For simplicity of exposition we deal with the case of
two symmetric male types. In the notation of the text we
consider mate-choice strategies of the form � = (0, t2),
where t2 is the switch time at which type 2 males are first
accepted. Suppose the resident strategy is � = (0, t2).
Then the payoff to a mutant female using mate-choice
strategy (0, s2) in this resident population is
f(s2) = W((0, s2), (0t2)). The function f is maximized when
the mutant employs the best response rule; i.e. when
s2 = B(t2). The analysis presented below is based on the
plausible assumption that f(s2) is a unimodal function of
s2 with a unique maximum at s2 = B(t2).

Suppose that B(t2) � t2. By unimodality

0 � s2 � t2 ⇒ W((0, s2), (0, t2))
� W((0, t2), (0, t2)) (B 1)

and

t2 � s2 � B(t2) ⇒ W((0, s2), (0, t2))
� W((0, t2), (0, t2)). (B 2)

Thus by relationship (2.7) of the main text and its ana-
logue with the reverse inequality

0 � s2 � t2 ⇒ �((0, s2), (0, t2)) � �((0, t2), (0, t2)) (B 3)

and

t2 � s2 � B(t2) ⇒ �((0, s2), (0, t2))
� �((0, t2), (0, t2)). (B 4)

In other words, if the resident population is � = (0, t2) and
B(t2) � t2, then there is a selection gradient in the neigh-
bourhood of the resident strategy selecting for higher
switch times.

APPENDIX C: THE MODEL WITH 50 MALE TYPES

Males are classified as types 1, 2, …, 50. If a female
mates with a type j male then on average she leaves
Nj = 10 
 0.004j 2 surviving offspring, half of which are
sons. Let

�i j = exp �

(i 
 0.8 j )2

32 �for i , j = 1, 2, ..., 50. (C 1)

Then the probability a son is type i is

i j =
�i j

�50

k = 1

�k j

. (C 2)
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